控制關鍵技術 (1)運動解算及軌跡規(guī)劃 運動求解,路徑規(guī)劃,提高機器人的運動精度和工作效率。 [5] (2)動力學補償 一般工業(yè)機器人是一個串聯(lián)懸臂式結構,剛性弱,運動復雜,容易發(fā)生變形和抖動,是一個需要運動學和動力學相結合的課題。為了改善機器人的動態(tài)性能和提高運動精度,機器人控制系統(tǒng)必須建立動力學模型,進行動力學補償。補償?shù)膬?nèi)容主要包括重力補償、慣量補償、摩擦補償、耦合補償?shù)取?[5] (3)標定補償 機器人機械本體由于加工誤差和裝配誤差的原因,難以避免會和理論數(shù)學模型存在偏差,會降低機器人TCP精度和軌跡精度,如在焊接和離線編程使用時會受到嚴重影響。通過檢測和算法標定補償機器人的模型參數(shù),可以較好地解決此問題。 [5] (4)工藝包完善 控制系統(tǒng)要與實際工程應用相結合,系統(tǒng)除不斷升級,功能更加強大外,還要根據(jù)行業(yè)應用的需求不斷開發(fā)和完善工藝包,有利于積累行業(yè)工藝經(jīng)驗,對客戶來說使用更方便,操作更簡單,效率更高。
機器人感知系統(tǒng)把機器人各種內(nèi)部狀態(tài)信息和環(huán)境信息從信號轉變?yōu)闄C器人自身或者機器人之間能夠理解和應用的數(shù)據(jù)和信息,除了需要感知與自身工作狀態(tài)相關的機械量,如位移、速度和力等,視覺感知技術是工業(yè)機器人感知的一個重要方面。視覺伺服系統(tǒng)將視覺信息作為反饋信號,用于控制調(diào)整機器人的位置和姿態(tài)。機器視覺系統(tǒng)還在質量檢測、識別工件、食品分揀、包裝的各個方面得到了廣泛應用。感知系統(tǒng)由內(nèi)部傳感器模塊和外部傳感器模塊組成,智能傳感器的使用提高了機器人的機動性、適應性和智能化水平。
電力驅動是目前使用多的一種驅動方式,其特點是電源取用方便,響應快,驅動力大,信號檢測、傳遞、處理方便,并可以采用多種靈活的控制方式,驅動電機一般采用步進電機或伺服電機,目前也有采用直接驅動電機,但是造價較高,控制也較為復雜,和電機相配的減速器一般采用諧波減速器、擺線針輪減速器或者行星齒輪減速器。由于并聯(lián)機器人中有大量的直線驅動需求,直線電機在并聯(lián)機器人領域已經(jīng)得到了廣泛應用。
工業(yè)機器人是廣泛用于工業(yè)領域的多關節(jié)機械手或多自由度的機器裝置,具有一定的自動性,可依靠自身的動力能源和控制能力實現(xiàn)各種工業(yè)加工制造功能。工業(yè)機器人被廣泛應用于電子、物流、化工等各個工業(yè)領域之中。