靜態(tài)熔融焊料的氧化根據(jù)液態(tài)金屬氧化理論,熔融狀態(tài)的金屬表面會(huì)強(qiáng)烈的吸附氧,在高溫狀態(tài)下被吸附的氧分子將分解成氧原子,氧原子得到電子變成離子,然后再與金屬離子結(jié)合形成金屬氧化物.暴露在空氣中的熔融金屬液面瞬間即可完成整個(gè)氧化過(guò)程,當(dāng)形成一層單分子氧化膜后,進(jìn)一步的氧化反應(yīng)則需要電子運(yùn)動(dòng)或離子傳遞的方式穿過(guò)氧化膜進(jìn)行,靜態(tài)熔融焊料的氧化速度逐漸減小;熔融的SnCu0.7比Snpb37合金氧化的要快.
日本學(xué)者Tadashi Takemoto等人對(duì)SnAg3.5,SnAg3.0Cu0.5,Sn63Pb37焊料進(jìn)行試驗(yàn),發(fā)現(xiàn)所有焊料的氧化渣重量都是通過(guò)線性增長(zhǎng)的,三種焊料氧化渣的增長(zhǎng)率幾乎相同,也就是其增長(zhǎng)速率與焊料成分關(guān)系不大.氧化渣的形成與熔融焊料的流體流動(dòng)有關(guān),流體的不穩(wěn)定性及瀑布效應(yīng),可能造成吸氧現(xiàn)象及熔融焊料的翻滾,使氧化渣的形成過(guò)程變得更加復(fù)雜.另外,從工藝角度講,影響氧化渣產(chǎn)生因素包括波峰高度,焊接溫度,焊接氣氛,波峰的擾度,合金的種類或純度,使用助焊劑的類型,通過(guò)波峰PCBA的數(shù)量及原始焊料的質(zhì)量等.
C,氧化渣機(jī)械泵波峰發(fā)生器中,存在著劇烈的機(jī)械攪拌作用,在熔融焊料槽內(nèi)形成劇烈的漩渦運(yùn)動(dòng),再加上設(shè)計(jì)的不合理造成的熔融焊料面的劇烈翻滾.這些漩渦和翻滾運(yùn)動(dòng)形成的吸氧現(xiàn)象,空氣中的氧不斷被吸入熔融焊料內(nèi)部.由于吸入的氧有限,不能使熔融焊料內(nèi)部的氧化過(guò)程進(jìn)行得像液面那樣充分,因而在熔融焊料內(nèi)部產(chǎn)生大量銀白色沙粒狀(或稱豆腐渣狀)的氧化渣.這種渣的形成較多,氧化發(fā)生在熔融焊料內(nèi)部,然后再浮向液面大量堆積,甚至占據(jù)焊料槽的大部分空間,阻塞泵腔和流道,后導(dǎo)致波峰高度不斷下降,甚至損壞泵葉和泵軸;另一種是波峰打起的熔融焊料重新流回焊料槽的過(guò)程中增加了熔融焊料與空氣中氧的接觸面,同時(shí)在熔融焊料槽內(nèi)形成劇烈的漩渦運(yùn)動(dòng)形成吸氧現(xiàn)象,從而形成大量的氧化渣.這兩種渣通常占整個(gè)氧化渣量的70%,是造成浪費(fèi)的.應(yīng)用無(wú)鉛焊料后將產(chǎn)生更多的氧化渣,且SnCu多于SnAgCu,典型結(jié)構(gòu)是90%金屬加10%氧化物.
清理
經(jīng)常性地清理錫爐表面是必須的。否則,從峰頂上回落的焊錫落在錫渣表面上,由于缺乏良好的傳熱而進(jìn)入半凝固狀態(tài),如此惡行循環(huán)也會(huì)導(dǎo)致錫渣過(guò)多。