● 汽車、機(jī)電或電聲等各行業(yè)
●各產(chǎn)品的聲學(xué)檢測用消聲室、半消聲室、手機(jī)或其它通訊產(chǎn)品檢測用消聲室、消聲箱
混響室一詞在聲學(xué)領(lǐng)域和電磁學(xué)領(lǐng)域都有應(yīng)用,其實(shí),電磁學(xué)領(lǐng)域混響室一詞是源于聲學(xué)領(lǐng)域的。在這里,為了區(qū)分二者,將聲學(xué)領(lǐng)域的混響室稱為聲學(xué)混響室,將電磁學(xué)領(lǐng)域的混響室稱為電波混響室。聲學(xué)混響室是一個能在所有邊界上全部反射聲能,并在其中充分?jǐn)U散,使形成各處能量密度均勻、在各傳播方向作無規(guī)分布的擴(kuò)散場的實(shí)驗(yàn)室。電波混響室是一個電大尺寸且具有高導(dǎo)電反射墻面構(gòu)成的屏蔽腔室,腔室中通常安裝一個或幾個機(jī)械式攪拌器或調(diào)諧器,通過攪拌器的轉(zhuǎn)動改變腔室的邊界條件,進(jìn)而在腔室內(nèi)形成統(tǒng)計均勻、各向同性和隨機(jī)極化的電磁環(huán)境。
電波混響室是一個電大尺寸且具有高導(dǎo)電反射墻面構(gòu)成的屏蔽腔室,腔室中通常安裝一個或幾個機(jī)械式攪拌器或調(diào)諧器,通過攪拌器的轉(zhuǎn)動改變腔室的邊界條件,進(jìn)而在腔室內(nèi)形成統(tǒng)計均勻、各向同性和隨機(jī)極化的電磁環(huán)境。
在國內(nèi),關(guān)于混響室的名稱多種多樣,公開發(fā)表的論文中出現(xiàn)的名稱包括“電波混響室”、“EMC混響室”、“電磁混響室”、“電磁混波室”等。為避免混淆,一方面,考慮到在形式上與另一種傳統(tǒng)意義的電磁兼容測試平臺“電波暗室”一致,比較習(xí)慣,也便于區(qū)分和理解;另一方面,在聲學(xué)領(lǐng)域,“混響室”使用更廣泛,而“混波室”使用比較少,而且混響室初是借鑒聲學(xué)研究中“混響室”的概念,所以有學(xué)者建議在國內(nèi)統(tǒng)一使用“電波混響室”這一名詞。
目前,應(yīng)用多、標(biāo)準(zhǔn)認(rèn)可、運(yùn)行比較可靠的電波混響室是機(jī)械攪拌式混響室,又稱模式攪拌式混響室(Mode Stirred Reverberation Chamber),它是在高反射腔體內(nèi),安裝一個或多個機(jī)械式攪拌器,通過攪拌器的連續(xù)或者步進(jìn)式轉(zhuǎn)動改變邊界條件,從而在腔室內(nèi)形成統(tǒng)計均勻、各向同性、隨機(jī)極化的場。此外,在混響室的研究中,不少學(xué)者提出了其他一些也能實(shí)現(xiàn)電磁混響的設(shè)計方案,這里做一簡單介紹。
(1)擺動墻(Moving Wall)式混響室。
1992年,Huang Yi等提出采用擺動墻方案。由于混響室墻體的擺動,使室內(nèi)體積不斷變化.從而連續(xù)改變空腔的諧振條件而達(dá)到混響的目的,但這種裝置的實(shí)際實(shí)現(xiàn)有一定困難。2002年,N.K.Kouveliotis等用FDTD方法仿真計算了擺動墻混響室的品質(zhì)因數(shù)Q和場均勻性.并通過建模、仿真其對EUT進(jìn)行了測試,考察了擺動墻混響室產(chǎn)生混響的性能。
(2)漫射體式混響室。
1997年,M.Petirsch等提出將建筑聲學(xué)中對聲波反射的Schroeder漫射體用于改善混響室內(nèi)電磁波的諧振,并用數(shù)值方法分別計算了帶有和不帶有漫射體的混響室內(nèi)電磁場的分布情況,結(jié)果表明漫射體改善了室場內(nèi)的均勻性。
(3)波紋墻式混響室。
1998年,E.A.Godfrey等提出了一種波紋墻的混響室結(jié)構(gòu)方案,并探討了在一個小型混響室內(nèi)(1.8m×1.2 m×0.8m)采用波紋墻對場均勻性的影響,考察的頻率范同為150MHz~650MHz,實(shí)驗(yàn)分別在平面鋁墻和鋼波紋墻混響室內(nèi)進(jìn)行,對比兩種條件下的數(shù)據(jù)結(jié)果表明,波紋墻有利于改善混響室內(nèi)的場均勻性。
(4)源攪拌混響室。
1992年,Y.Huang和D.J.Edwards提出源攪拌的方法。它通過在測試中移動天線的位置或控制天線陣中不同天線的發(fā)射信號的方法改變測試中源的位置,達(dá)到混響的目的。它的基本原理是改變混響室中各本征模的權(quán)重因子。這種方法由于不用機(jī)械攪拌器,使得測試空間增大,而且還能改善混響室的低頻性能,所以至今仍有人對之進(jìn)行研究,這些研究用本征函數(shù)疊加的方法推導(dǎo)了混響室有源激勵的電磁場分布公式,并提出了對稱模與反對稱模發(fā)射的方法(即源攪拌方法),從理淪上證實(shí)了利用源攪拌實(shí)現(xiàn)混響的可行性,一定條件下在低模狀態(tài)下可獲得均勻場,并且模擬的結(jié)果證實(shí)了數(shù)據(jù)推導(dǎo)的正確性,為混響室在低于可用頻率的分析提供了可行的方法。
(5)頻率攪拌混響室
1994年,David A.Hill提出頻率攪拌的方法。其二維的數(shù)值計算結(jié)果表明,用中心頻率為4GHz、帶寬為10MHz的線源激勵時,場的均勻性很好,其三維分布情況還有待進(jìn)一步分析。此外,非零帶寬對敏感度測試的影響有待進(jìn)一步分析。在輻射發(fā)射測試中,由于不能控制受試設(shè)備(EUT)的頻譜,是否還能用頻率攪拌的方法進(jìn)行測試有待研究。
(6)不對稱結(jié)構(gòu)(或固有)混響室
1998年,F(xiàn)rank B.J.Leferink等設(shè)計了一種新型混響室,它沒有任何兩個墻面是平行的,只有一個壁面垂直于其他墻面,混響室的長、寬、高尺寸不成比例,且在室內(nèi)某些位置安裝了漫射體。研究結(jié)果表明,其在沒有使用機(jī)械攪拌器的情況下產(chǎn)生了統(tǒng)計均勻的電磁場,使得測試時間相對于機(jī)械攪拌混響室而言大幅度減少。S.Y.Chung等還考察了“Schroeder diffuser”和“Rand