軟質屏幕技術
無論是何種應用方式,正投軟質屏主要技術都是在一種不透光的布料表面上進行各種
不同材料的噴涂,而表面材料中應用了不同的光學材料,光學材料中光學因子多少和分布則決定了屏的增益、視角和分辨率。同時,這些光學因子和其他色素可以對投影畫面的色彩飽和度和畫面進行優化。
背投的投影光線是從后面照射到屏幕并成像.其軟質屏的材料為PVC.屏的品質同樣與表面材料和屏材料有關。
視角
屏幕在所有方向上的反射是不同的,在水平方向離屏幕中心越遠,亮度越低。當亮度降到50%時的觀看角度,定義為視角。在視角之內觀看圖像,亮度令人滿意;在視角之外觀看圖像,亮度顯示得不夠。一般來說屏幕的增益越大,視角越小(金屬幕);增益越小,視角越大(由于照顧學生,教育幕多采用白塑幕)。
看似“神秘”的等離子體,其實是宇宙中一種常見的物質,在太陽、恒星、閃電中都存在等離子體,它占了整個宇宙的99%。21世紀人們已經掌握和利用電場和磁場產生來控制等離子體。常見的等離子體是高溫電離氣體,如電弧、霓虹燈和日光燈中的發光氣體,又如閃電、極光等。金屬中的電子氣和半導體中的載流子以及電解質溶液也可以看作是等離子體。在地球上,等離子體物質遠比固體、液體、氣體物質少。在宇宙中,等離子體是物質存在的主要形式,占宇宙中物質總量的99%以上,如恒星(包括太陽)、星際物質以及地球周圍的電離層等,都是等離子體。為了研究等離子體的產生和性質以闡明自然界等離子體的運動規律并利用它為人類服務,在天體物理、空間物理、特別是核聚變研究的推動下,近三、四十年來形成了磁流體力學和等離子體動力學。
當光打在金屬表面時,二維光或是等離子體就會被激發。等離子體可以被看作是光子和電子的連接。
可以建立一個混合原則,由光轉變成的等離子體在金屬表面傳播時(該等離子體的波長比原始光波的波長小的多);等離子體能被二維光學儀器(鏡子、波導、透鏡等)處理,等離子體能再次轉變成光或者電信號。
等離子體傳感器和癌癥儀:NaomiHalas描述了等離子體怎樣激發小金屬層表面的,米粒形狀的粒子能量很大,做光譜學試驗的光是微分子數量級。在米粒狀粒子彎曲頂端處等離子體電場比用來激發等離子體的電場強很多,并且它在很大程度上改進了光譜的速率和性。換一種說法,納米數量級的等離子體不僅可以用來鑒定,還可以用來殺死癌細胞。