證明生成的過程中,約有60%的時間花在MSM上,其余時間由NTT/FTT主導。MSM和NTT都存在性能挑戰,通常的解決辦法:
●MSM可以在多線程上執行,從而支持并行處理。然而,當處理大型數據向量時,例如6700萬個參數,乘法運算可能仍然很慢,并且需要大量的內存資源。此外,MSM存在可擴展性方面的挑戰,即使在廣泛并行化的情況下也可能保持緩慢。
按照官方的設想和規劃未來在Aleo上每天的交易量都是上億美金的規模,在這樣大數據量的要求下,每時每刻都有證明需要被委托出去在極短的時間內完成證明的生產,不可能指望顯卡能解決這個問題。就像AI大模型訓練一樣,早期數據量和參數少的情況下可以用消費級顯卡,但是現在更多的都是為AI訓練設計的專用芯片和機器。
既然共識是POS的,自然也就不怕ASIC控制網絡,壓根也控制不了,也就不存在分叉的問題,而且從算法和定位的角度上來說,ASIC也是必然需求。Aleo芯片機,Aleo-ASIC,zktaoma或者maxsayss
Aleo是什么?
Aleo是個提供完全私有應用程序的公鏈,利用去中心化系統和零知識密碼學為用戶提供具有隱私的無限計算,通過構建一個默認為私有、開源且為Web構建的區塊鏈,解決區塊鏈隱私保護的缺點。