在分析之前,我們先看一下ASIC(Application Specific Integrated Circuit),中文全稱是“專用集成電路”。這里特別強(qiáng)調(diào)“專用”,“專用”意味著針對(duì)單一項(xiàng)目來說會(huì)更加有競(jìng)爭(zhēng)力。相對(duì)比,GPU(顯卡)是通用計(jì)算處理芯片,所以在單一項(xiàng)目上來說“專用”肯定比“通用”更有競(jìng)爭(zhēng)力。
軟件層面,在語言層面上,ZK更友好的格式,也會(huì)帶來加速生成的過程,比如Aleo的Leo語言。再就是算法本身的優(yōu)化,雖然說有一定的優(yōu)化空間,但是要想有大的突破需要非常多的時(shí)間,畢竟?fàn)可娴胶芏鄶?shù)學(xué)問題。
證明生成的過程中,約有60%的時(shí)間花在MSM上,其余時(shí)間由NTT/FTT主導(dǎo)。MSM和NTT都存在性能挑戰(zhàn),通常的解決辦法:
●MSM可以在多線程上執(zhí)行,從而支持并行處理。然而,當(dāng)處理大型數(shù)據(jù)向量時(shí),例如6700萬個(gè)參數(shù),乘法運(yùn)算可能仍然很慢,并且需要大量的內(nèi)存資源。此外,MSM存在可擴(kuò)展性方面的挑戰(zhàn),即使在廣泛并行化的情況下也可能保持緩慢。
●在算法過程中頻繁的數(shù)據(jù)混洗使得NTT難以在計(jì)算集群中分布,無法并行計(jì)算,并且由于需要從大型數(shù)據(jù)集中加載和卸載數(shù)據(jù),在硬件上運(yùn)行時(shí)需要大量帶寬。即使硬件操作很快,這可能也會(huì)導(dǎo)致速度變慢。例如,如果硬件芯片的內(nèi)存為16GB或更少,那么在100GB的數(shù)據(jù)集上運(yùn)行NTT將需要通過網(wǎng)絡(luò)加載和卸載數(shù)據(jù),這可能會(huì)大大降低操作速度。